If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+32x-51=0
a = 3; b = 32; c = -51;
Δ = b2-4ac
Δ = 322-4·3·(-51)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{409}}{2*3}=\frac{-32-2\sqrt{409}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{409}}{2*3}=\frac{-32+2\sqrt{409}}{6} $
| 5x^2+32x-51=0 | | 3x^2-32x+51=0 | | 7y+11=60y= | | 4y+3y+5y=0 | | 13=7-2x | | 8(x+2.5)=78 | | 5y-4=9y+9 | | -2+7a=1+4a | | 3x²/4-12x/4-15/4=0/4 | | -4(3+x)=-2 | | 260+2x/5=90 | | 1/8(x+16)=76 | | (2t–3)²=2t²+5t–26 | | 6x^-7x+1=0 | | 50x+600=85x | | 16=(-c)+20 | | x+(x*18/100)=87480 | | 2x-3=5(x/4)+1 | | 3=2(p-3 | | 3p+3=-10 | | x/2=2.1/2 | | x+(x*18/100)=93605 | | 3/20+w+3/20+w=2.5 | | 3/20+w+3/20+w=8 | | 2x+(-5/3)=7/4 | | X÷2+x÷4=1÷8 | | X2=15-2x | | X+2x=147 | | 9-(x-6)=2x | | x/2-1=5x+10/6 | | 5(x+4=35 | | 11y^2=33y |